Data Science Certification Training

Data Science Certification Training

Edureka’s Data Science Training lets you gain expertise in Machine Learning Algorithms like K-Means Clustering, Decision Trees, Random Forest, and Naive Bayes using R. Data Science Training encompasses a conceptual understanding of Statistics, Time Series, Text Mining and an introduction to Deep Learning. Throughout this Data Science Course, you will implement real-life use-cases on Media, Healthcare, Social Media, Aviation and HR.

Introduction to Data Science

Learning Objective: Get an introduction to Data Science in this module and see how Data Science helps to analyze large and unstructured data with different tools.

Topics:

  • What is Data Science?
  • What does Data Science involve?
  • Era of Data Science
  • Business Intelligence vs Data Science
  • Life cycle of Data Science
  • Tools of Data Science
  • Introduction to Big Data and Hadoop
  • Introduction to R
  • Introduction to Spark
  • Introduction to Machine Learning

 

Statistical Inference

Learning Objective: In this module, you will learn about different statistical techniques and terminologies used in data analysis.

Topics:

  • What is Statistical Inference?
  • Terminologies of Statistics
  • Measures of Centers
  • Measures of Spread
  • Probability
  • Normal Distribution
  • Binary Distribution

 

Data Extraction, Wrangling and Exploration

Learning Objective: Discuss the different sources available to extract data, arrange the data in structured form, analyze the data, and represent the data in a graphical format.

Topics:

  • Data Analysis Pipeline
  • What is Data Extraction
  • Types of Data
  • Raw and Processed Data
  • Data Wrangling
  • Exploratory Data Analysis
  • Visualization of Data

Hands-On/Demo:

  • Loading different types of dataset in R
  • Arranging the data
  • Plotting the graphs

 

Introduction to Machine Learning

Learning Objective: Get an introduction to Machine Learning as part of this module. You will discuss the various categories of Machine Learning and implement Supervised Learning Algorithms.

Topics:

  • What is Machine Learning?
  • Machine Learning Use-Cases
  • Machine Learning Process Flow
  • Machine Learning Categories
  • Supervised Learning algorithm: Linear Regression and Logistic Regression

Hands-On/Demo:

  • Implementing Linear Regression model in R
  • Implementing Logistic Regression model in R

 

Classification Techniques

Learning Objective: In this module, you should learn the Supervised Learning Techniques and the implementation of various techniques, such as Decision Trees, Random Forest Classifier, etc.

Topics:

  • What are classification and its use cases?
  • What is Decision Tree?
  • Algorithm for Decision Tree Induction
  • Creating a Perfect Decision Tree
  • Confusion Matrix
  • What is Random Forest?
  • What is Naive Bayes?
  • Support Vector Machine: Classification

Hands-On/Demo:

  • Implementing Decision Tree model in R
  • Implementing Linear Random Forest in R
  • Implementing Naive Bayes model in R
  • Implementing Support Vector Machine in R

 

Unsupervised Learning

Learning Objective: Learn about Unsupervised Learning and the various types of clustering that can be used to analyze the data.

Topics:

  • What is Clustering & its use cases
  • What is K-means Clustering?
  • What is C-means Clustering?
  • What is Canopy Clustering?
  • What is Hierarchical Clustering?

Hands-On/Demo:

  • Implementing K-means Clustering in R
  • Implementing C-means Clustering in R
  • Implementing Hierarchical Clustering in R

 

Recommender Engines

Learning Objective: In this module, you should learn about association rules and different types of Recommender Engines.

Topics:

  • What is Association Rules & its use cases?
  • What is Recommendation Engine & it’s working?
  • Types of Recommendations
  • User-Based Recommendation
  • Item-Based Recommendation
  • Difference: User-Based and Item-Based Recommendation
  • Recommendation use cases

Hands-On/Demo:

  • Implementing Association Rules in R
  • Building a Recommendation Engine in R

 

Text Mining

Learning Objective: Discuss Unsupervised Machine Learning Techniques and the implementation of different algorithms, for example, TF-IDF and Cosine Similarity in this Module.

Topics:

  • The concepts of text-mining
  • Use cases
  • Text Mining Algorithms
  • Quantifying text
  • TF-IDF
  • Beyond TF-IDF

Hands-On/Demo:

  • Implementing Bag of Words approach in R
  • Implementing Sentiment Analysis on Twitter Data using R

 

Time Series

Learning Objective: In this module, you should learn about Time Series data, different component of Time Series data, Time Series modeling – Exponential Smoothing models and ARIMA model for Time Series Forecasting.

Topics:

  • What is Time Series data?
  • Time Series variables
  • Different components of Time Series data
  • Visualize the data to identify Time Series Components
  • Implement ARIMA model for forecasting
  • Exponential smoothing models
  • Identifying different time series scenario based on which different Exponential Smoothing model can be applied
  • Implement respective ETS model for forecasting

Hands-On/Demo:

  • Visualizing and formatting Time Series data
  • Plotting decomposed Time Series data plot
  • Applying ARIMA and ETS model for Time Series Forecasting
  • Forecasting for given Time period

 

Deep Learning

Learning Objective: Get introduced to the concepts of Reinforcement learning and Deep learning in this module. These concepts are explained with the help of Use cases. You will get to discuss Artificial Neural Network, the building blocks for Artificial Neural Networks, and few Artificial Neural Network terminologies.

Topics:

  • Reinforced Learning
  • Reinforcement learning Process Flow
  • Reinforced Learning Use cases
  • Deep Learning
  • Biological Neural Networks
  • Understand Artificial Neural Networks
  • Building an Artificial Neural Network
  • How ANN works
  • Important Terminologies of ANN’s
You can Call us at +91 98702 76457 /1844 230 6362 ( US Tollfree ) OR Email us at sales@edureka.co . We shall be glad to assist you.
All the instructors at Edureka are practitioners from the Industry with minimum 10-12 yrs of relevant IT experience. They are subject matter experts and are trained by Edureka for providing an awesome learning experience.
We have limited number of participants in a live session to maintain the Quality Standards. So, unfortunately participation in a live class without enrolment is not possible. However, you can go through the sample class recording and it would give you a clear insight about how are the classes conducted, quality of instructors and the level of interaction in the class.
To help you in this endeavor, we have added a resume builder tool in your LMS. Now, you will be able to create a winning resume in just 3 easy steps. You will have unlimited access to use these templates across different roles and designations. All you need to do is, log in to your LMS and click on the "create your resume" option.
You will never miss a lecture at Edureka! You can choose either of the two options: • View the recorded session of the class available in your LMS. • You can attend the missed session, in any other live batch.

Be the first to add a review.

Please, login to leave a review
Add to Wishlist
Enrolled: 0 students
Duration: 30
Video: 30
Level: Intermediate

Categories